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Abstract

This report presents our solution to the Kaggle Chal-
lenge on Cardiac Pathology Prediction, which aims to
classify patient health status (healthy/ill), and iden-
tify the most probable pathology. Our approach syn-
thesizes current literature through a methodological
interpolation of existing techniques, followed by qual-
itative analysis of the implemented solution.

1 Introduction

The Cardiac Pathology Prediction aims to predict pa-

tient’s cardiac pathologies. This task is critically im-

portant in cardiac pathologies diagnosis as evidenced

by the extensive body of literature dedicated to it as

we will see in the state of the art in the following.
In this report, we:

e Propose an implementation of our method.

e Analyze the dataset and highlight key prepro-
cessing steps and key features.

e Explain how we achieved a high accuracy.

2 Dataset description

The data used consists of 150 MRIs and their corre-
sponding segmentations of the Myocardium (MYO),
the Left Ventricle (LV), and the Right Ventricle (RV)
[[l We are given two files per patient, one .nii file

at end diastole and one at end systole, which rep-
resent the maximum and minimum contraction for
the LV. Moreover, we have access to the height and
the weight of each patient. For the first 100 patients
we have access to the target, these are the training
data. For the 50 other ones, the target and the seg-
mentation of the LV are missing. They make up the
testing data. The metric chosen in order to score the
performances of our models is accuracy. When pre-
dictions are submitted, a public score is computed on
approximately 30% of the test data and immediately
disclosed. The remaining 70% constitutes a private
test set, whose scores remain undisclosed until the
challenge concludes to prevent potential reverse en-
gineering of the evaluation metric.

Overlay of Segmentation on Frame 2 Overlay of Segmentation on Frame 2

((a)) Slice 2 at ED ((b)) slice 3 at ED

Figure 1: Ground Truth (i.e. given segmentation)
overlapped to the initial MRI (Patient ID: 027). LV
in blue, MYO in green and RV in red.



Both the training and the testing data are bal-
anced, i.e. each class is represented equally. There
are 5 categories that could be predicted:

e 0’ - Healthy controls

e '1’ - Myocardial infarction

e ’2’ - Dilated cardiomyopathy

e '3’ - Hypertrophic cardiomyopathy
e ’'4’ - Abnormal right ventricle

The frequency of occurrence of each class is 20%.

From now on the goal is to deal with the following
problems: how to get the LV segmentation on our
testing dataset? How to extract good features? How
to deal with this small amount of data to make sure
our model is good and does not overfit? And which
model should we use?

Some of these questions are already addressed in
the state of the art.

3 State of the art

In order to address this challenge, 4 papers were men-
tioned to us to start with. But our researches led us
to other interesting papers.

3.1 Non-exhaustive overview of the
literature

e Wolterink et al. used 14 features: LV, RV,
and myocardial volume at ED and ES (in mL),
the LV and RV ejection fraction (EF), the ratio
between RV and LV volume at ED and ES, and
the ratio between myocardial and LV volume at
ED and ES [Wol+18]. Then a Random Forest
classifier model was trained on these features.

e Isensee et al. extracted a series of instants and
dynamic features from the segmentation maps
[Ise+18] . They also used a Random Forest clas-
sifier.

e Khened et al. (2018) used 11 features: Ejec-
tion Fraction of LV and RV, Volume of RV and
LV at ED and ES, Mass of MYO at ED and Vol-
ume at ES, Height, and Weight [KAK18|. They
also used a RF classifier.

e Khened et al. (2019) extended their previous
work by developing a two-stage classification ap-
proach. The first step is an ensemble hard voting
classifier made of an SVM, a Random Forest, a
Naive Bayes and an MLP. The features used at
this stage are similar to the previous ones. Then
an MLP which plays the role of the expert clas-
sifier is used to refine labels 1 and 2. [KKK19].

3.2 Comparative Review

Bernard et al. conducted a comprehensive review
of these papers except the last one, classifying the
ACDC challenge submissions and comparing their
methodologies [Ber+18].

From Figure ??, one can observe that [KAK18]
achieved near-perfect classification with 48 out of
50 patients correctly identified. Figure 77 displays
the best results on this classification challenge. No-
tably, the second and third best methods closely fol-
lowed this performance with 92% accuracy each. But
IKKK19| claims achieving a perfect accuracy score on
classification.

Methods Accuracy
Authors Architectures
Khened et al. [46] Random Forest 0.96
Cetin er al. [53] SVM 0.92
Isensee et al. [44] Random Forest 0.92
Wolterink et al. [50] Random Forest 0.86

Figure 2: Performance comparison on the Classifica-
tion Challenge from [Ber+18]

Therefore, according to [Ber+18] Khened et al.
the best results. However, this paper does not men-
tion [KKK19] which claims to achieve a perfect score
of 100% on the 50 patients from the test. This new
method improves the result of their previous imple-
mentation (i.e. [KAKIS]).



We will try implementing some of these methods Once we have our fully segmented data, we have
in order to compare them. to extract features to train our models. Different
features have been mentioned in the articles men-
. tioned before but a lot of them are redundant. Let’s

4 Data Preprocessing overview them.

We analyze the distribution of key cardiac features
across the training and test sets to assess potential
discrepancies that could influence model generaliza-
tion.

Raw data is given to us as explained in our Data
description. The first issue we have to deal with
is the LV missing in the testing data set. Figure
shows this issue.

Segmention at ED - slice 4 - Patient 126

4.1 End-Diastolic Volume (EDV)

e EDV LV: Right-skewed; test set has heavier tail
beyond 200 mL.

Segmention at ED - slice 4 - Patient 004

¢ EDV Myo: Near-Gaussian in both sets; test
has lower variance.

¢ EDV RYV: Similar shape; test is more skewed
with broader tail.

((a)) Segmentation train- ((b)) Segmentation on : A aie j A
ing data (Patient ID: 004)  testing data (Patient ID: N \\\ : A\
126) . | | AR | | SR

Figure 3: Comparative segmentation showing (a) ((2)) EDVLV.  ((b)) EDV Myo  ((c)) EDV RV

training and (b) testing, Figure 5: End-Diastolic Volume distributions

This problem is addressed with the following . . .
pipeline We first binarize the ground truth and 4.2 Ejection Fraction (EF)

find the contours of the mask using OpenCV. Then e EF LV: Bimodal with shift; train set has strong
we fill the hole and the difference between the first '

: secondary peak.
mask and the filled one gives us our LV.

e EF RV: Test set peaks near 50%; train is more

Input Binarize Find Contours Fill Holes Spread .
(SITK .nii) (cv2.threshold) (cv2.findContours) (cv2.drawContours)

OpenCV OpepCV OpepnCV Distribution of EF LV o Distribution of EF RV
Output Mask Create Mask \ /A
{0,1,2,3} (np.where) \\\
\
NumPy \\

Figure 4: Processing pipeline using SimpleITK ((a)) EF LV ((b)) EF RV
(SITK) OpenCV (cv2) and NumPy (np) to get the
LV segmentation on testing patient. Figure 6: Ejection Fraction distributions



4.3 End-Systolic Volume (ESV)

e ESV LV: Right-skewed in both; test has more
mass in 150-250 mL.

e ESV Myo: Nearly identical in both sets.

e ESV RV: Test set has a broader high-end tail.

K

) ESV RV

((a)) ESV LV ) ESV Myo

Figure 7: End-Systolic Volume distributions

4.4 Anatomical Ratios

Myo/LV ED: Peaks just above 0.5; train has
broader spread.

Myo/LV ES: Test shows heavier right tail be-
yond 8.

RV /LV ED: Nearly identical distributions.

RV /LV ES: Test set shows heavier tail up to 9.

((b)) Myo/LV ES

Distribution of RV/LY ES

((a)) Myo/LV ED

Distribution of RV/LY ED

i

((c)) RV/LV ED ((d)) RV/LV ES

Figure 8: Ratios of anatomical regions

4.5 Anthropometric Features

e Height:
left.

Bell-shaped; test set slightly shifted

e Weight: Unimodal; test set has heavier right
tail.

Figure 9: Distribution of anthropometric features

4.6 Conclusion on features’ distribu-

tions

Overall, the distributions indicate a relatively bal-
anced train / test split, although subtle differences
in the volumes related to EF and RV suggest the
need for careful validation. Nevertheless, these dis-
tributions show that the extracted features are well-
structured and likely relevant, as indicated by their
non-random, clinically plausible shapes. This sug-
gests that our model has the potential to generalize
well to unseen data, assuming that it is trained with
proper regularization and validation strategies. At
the same time, the observed shifts and differences of
shape in distributions of some features like EF for
the RV imply that some variables may not generalize
as good as we could think. However, given our small
data set, excluding these features might be counter-
productive. Moreover, even though shapes could be
slightly different, train and test distributions always
overlap a lot.

5 Implementation

Having preprocessed the data and validated the con-
sistency of the extracted features across training and



test sets, we now move to the implementation of
several classification approaches. Our methodology
progresses from simple baseline models to more ad-
vanced, literature-inspired architectures, aiming to
benchmark their performance.

5.1 First implementation 12 features

My first attempt at this was to extract 12 features
and train a model on it. These features were inspired
by . At this time, we did not see MLPs in
classes, so we preferred to use classifiers like Ran-
dom Forests or XGboosts. Training an XGB on these
data achieved a mediocre score of 46% on the public.
We then tried a classic Random Forest with n=1000
estimatores which was showing some high scores as
shown in But it seems that the model was over-
fitting. The public score was 80% and the private
disclosed later was 71% which is really low compared
to the state of the art.

Confusion Matrix of Random Forest Classifier

True label

T — D
0 1 2 3 4
Predicted label

Figure 10: Confusion matrix obtained by training a
Random Forest with 1000 estimators on 70% of train-
ing data. (Implementation using 12 features)

5.2 Implementation using 14 features

For the second attempt, we tried using more features.
Therefore, we extracted the 14 features mentioned in
[Wol+18] and trained a Random Forest classifier on
this data. In order to choose the parameters we per-
formed a cross validation on our traning data and
noticed that even though uses 1000 esti-
mators, our best scores were obtained using 100 esti-
mators. With this method we obtained an estimator
that reached a perfect score on public. From here,
it was difficult to get the results any better since we
could not see any improvement. Note that we tried
other classifiers as Logistic regression, SVM or Naive
Bayes but these models were less performant [I We
still wanted to try to find the best parameters for our
Random Forest classifier. Therefore, we performed a
Grid search in order to maximize accuracy on train-
ing set. We obtained a mean accuracy of 96% on our
training data but it did not help with the test since
the score went down to 86% on public. It means that
we were overfitting our data.

Note that we tried different pre-processing tools
as scaling or PCA. But RF is invariant to scale
changes and PCA could not help. However, these pre-
processings helped to increase a bit the performances
of other models as GaussianNB which reached 90%
percent after a PCA and a Standard Scaling.

Classifier Mean Accuracy Std

Logistic Regression 0.8700 0.0578
SvC 0.9100 0.0510
Random Forest 0.9400 0.0270
Gradient Boosting 0.9400 0.0543
KNeighbors 0.8600 0.0602
MLP 0.8600 0.0632
GaussianNB 0.8600 0.0648

Table 1: Results for each classifier on our training
data using a Stratified K fold with 5 splits.

Finally, when the private score was disclosed we
saw that this model was achieving an accuracy of
88% on the private. This drop of performance can be
explained by the errors of misclassification between

class 1 and 2 mentioned by [KKK19).



5.3 Implementation of the 2 stage
method

In this part we tried implementing a 2 stage classifi-
cation as mentioned by . The method was
more complex than what we have done until now but
implementation was not that difficult. Firstly we had
to extract 20 features.

5.3.1 Stage 1 (Voting Classifier)

We use all 20 of the following features as input to
each Stage 1 classifier (SVM, RF, GNB, MLP):

1. Volumes at end-diastole (ED) - same as before.
2. Volumes at end-systole (ES) - same as before.
3. Ejection fractions - same as before.

4. Volume ratios at ED and ES - same as before.

5. Myocardial wall-thickness (MWT) variation at
ED - a new feature that can be useful in par-
ticular because it can describe patient with My-
ocardial Infarctus.

6. Myocardial wall-thickness (MWT) variation at
ES - a new feature that can be useful in particu-
lar because it can describe patient with Myocar-
dial Infarctus.

The implementation of this stage was not convinc-
ing at first. [KKK19| mentions that only classifiers
achieving more than 95% of accuracy were kept but,
as we can see in[2] only one classifier achieved such
a performance even after optimization with Grid and
Bayesian searches. We still used these four classifiers
even though they did not match the perfect descrip-
tion of the paper. However we achieved a good per-
formance as shown in We reached an accuracy
of 96.7% but it is not extremely relevant since it is
obtained on only a few data. We still notice a misclas-
sification between classes 1 and 2 which is addressed
in the paper. This is why we might need refinement.

Classifier Mean Accuracy Std

Random Forest 0.9400 0.0270
SVC 0.9100 0.0400
MLP 0.9100 0.0274
GaussianNB 0.9400 0.0490

Table 2: Best results for each classifier on our training
data with new features using a Stratified K fold with
5 splits.

Confusion Matrix

0.00 0.00

True label

3 3 3 3 6.00

Predicted label

Figure 11: Confusion Matrix obtained after training
our Voting Classifier with 70% of the training data.

5.3.2 Stage 2 (MINF vs DCM expert)

Only the end-systolic myocardial wall-thickness vari-
ation features are used to refine MINF vs DCM:

1. Maximum of the mean wall thickness across all
slices at end-systole.

2. Standard deviation of the mean wall thickness
across all slices at end-systole.

3. Mean of the per-slice wall-thickness standard de-
viations at end-systole.

4. Standard deviation of the per-slice wall-
thickness standard deviations at end-systole.



We trained an MLP with two hidden layers each
with 100 neurons as described by the paper. After
trying to adjust the parameters to avoid overfitting,
we obtained a decent score, which is 87% in our vali-
dating data. However, we noticed that the MLP did
not correctly classify our data. It even got worse, as
we can see in figure

The results obtained are far from the ones ex-
pected. There might be errors in our implementa-
tion, but we could not find them. Still, it is most
likely due to the 4 new features that we will discuss
in the following section. We still submitted a pre-
diction with this model and obtained a private score
of 77% which shows that this model underperformed
significantly.
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Figure 12: Confusion Matrix obtained after training
our 2 stages model with 70% of the training data.

5.4 New features and improvement
5.4.1 New features

Firstly, after seeing the bad results obtained in the
last section, we suspected an issue in the extrac-
tion process of the four new features described by

IKKK19]. Let’s plot them in order to see it if there
is a problem:

((b)) MWT_ES_mean_std

Distribution of MWT ES std std

((c)) MWT_ES_std_mean ((d)) MWT_ES_std_std

Figure 13: Distributions of MWT-derived features.
train in blue vs test in red

We can notice that distributions from train and
testing data are almost the same. This means that
the difference between our test score and the private
score achieved on the challenge data are most likely
due to overfitting. Still, these features could be rel-
evant, at least given these plots. However, they are
used mainly to refine our model prediction on classes
1 and 2. Therefore, we have to verify that these
features have a high discriminative power between
classes 1 and 2.

((a)) MWT_ES_mean_max

Distroution of MWT.ES std mean
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((¢)) MWT_ES_std_mean ((d)) MWT_ES_std_std

Figure 14: Distributions of MWT-derived features.
class 1 in blue vs class 2 in red



Given these new plots, we see that some of MWT
derived features are more discriminatuve than others.
However, we thought it could be better. In partic-
ular, even though they have different heights, their
mean/ standard deviations are often close, which
makes them overlap a lot.

Note that the non-relevance of these features is
most likely due to a wrong extraction and not an
error in [KKK19|. Instead of taking too much time
trying to find these errors, we preferred to try some-
thing new.

5.4.2 Improvement

The idea was to use [KKK19] work as an inspiration
to get a better result. The paper implementation was
not convincing most likely due to some errors in the
code or some bad choices of parameters. However the
idea of refining the prediction was a good direction.
The work of [ZDA19] also pushes towards this same
conclusion. They use a 4 stages classification always
using binary classification. After the first 3 stages, all
patients are classified except MINF and DCM (that
is, classes 1 and 2). Therefore, it shows that the
difficult work relies on correctly classifying classes 1
and 2.

Since our first classification using a simple Random
Forest (n=100 and 14 features) seemed to give better
results than the Voting Classifier we chose to use this
classifier for the first stage. Once we got this first
stage prediction, we wanted to refine it using a binary
classifier. There are now two remaining questions,
which classifier and what features to choose 7

We first tried some random features without try-
ing any intelligent selection. The results were not
convincing. Then we tried to choose the features
that could separate the most between both classes.
For that, we used in order to find the best fea-
tures. As we can see, there are a lots of features
that have distinct distributions. We chose to only
use 4 of them in order to separate clearly both classes:
ESV LV, EDV Myo, ESV Myo, ESV RV. This
is how we motivated that choice: we aim to clas-
sify between Myocardial infarction (MINF) and Di-
lated cardiomyopathy (DCM), and MINF is related
to Myocardium whereas DCM is related to volumes

(it is a disease that makes ventricles grow larger).
We therefore wanted two features that could describe
Myocardium, i.e. EDV Myo and ESV Myo. Then we
wanted to describe left and right volumes. In order to
make sense we thougt that we should describe them
at the same instant. Since the plot of ESV LV shows
two distinct distributions that are more differentiable
than EDV LV (not the same height, mean, and stan-
dard deviation), we chose ESV LV to describe LV
volumes. The last choice was restrained to ESV RV.

(b)) EDVRV  ((c)) ESV RV

((d)) E]SV Myo  ((e)) ESV Myo ((6) EF LV

E | Gy

((g)) EF RV

((h)) R\})LV ED ((i) R\;‘/LV ES

((§)) Myo/LV ED ((k)) Myo/LV ES ((1)) EDV LV

Figure 15: Distributions of some of the clinical fea-
tures (class 1 in blue vs class 2 in red)

Based on the selected features for the second
stage, we trained several binary classifiers to distin-
guish between MINF and DCM. Models that initially
achieved a mean cross-validation accuracy below 85%
were further optimized using Bayesian hyperparam-
eter search. All classifiers ultimately achieved rela-
tively high accuracy scores after tuning, except for
the MLP, which improved from 72% to only 82%.
Given this underperformance, we expected the MLP
to yield the weakest results in the full pipeline. Sur-
prisingly, it produced the highest private test accu-
racy, as shown in Table

This unexpected outcome may be attributed to un-



intentional regularization. The MLP configuration
was initially copied from another project, and in-
cluded restrictive parameters such as early stopping,
strong regularization penalties, and a limited valida-
tion fraction. These settings likely reduced overfit-
ting during training, unlike the other classifiers that
may have overfit due to more permissive configura-
tions.

Furthermore, we observed that classifier perfor-
mance varied significantly depending on the data
split. To assess robustness, we generated ROC curves
under different random seeds for stratified sampling.
As shown in Figures [16(a)| and [16(b)l AUC scores
fluctuated considerably: in the first split, most classi-
fiers achieved perfect separation (AUC = 1.00), while
in the second split, scores were more moderate, rang-
ing from 0.87 to 1.00.

This variability highlights the sensitivity of our
models to the limited dataset size and the spe-
cific train-test partitioning. It also suggests that
some models are more sensitive to sampling variance.
These findings show that in small datasets, perfect
scores should be interpreted with caution, as they
may reflect overfitting or random chance rather than
true predictive ability.

ROC Curves for Stage 2 Classifiers Random_state=1 ROC Curves for Stage 2 Classifiers Random _state=2

True Positive Rate

((a)) ROC curves (Split 1) ((b)) ROC curves (Split 2)

Figure 16: ROC curves for different classifiers across
two random train/test splits

6 Conclusion

In this report, we addressed the ACDC cardiac
pathology classification challenge through a progres-
sive implementation of increasingly complex models,
inspired by the state of the art. Starting from basic

Model Accuracy (%)
MLP 94
Logistic Regression 88
K-Nearest Neighbors 82
XGBoost 88
Gaussian Naive Bayes 82
Support Vector Classifier (SVC) 82
Random Forest 82

Table 3: Classification accuracy of different models
on the test set (private score).

feature-based models and culminating in a two-stage
architecture, we evaluated performance both quanti-
tatively and qualitatively.

Our experiments highlighted several key points:

e Simple models like Random Forests can achieve
high accuracy (up to 88%) with well-engineered
features.

e Multi-stage and ensemble approaches require
careful feature selection and tuning to avoid
overfitting, especially on small datasets.

e Differentiating between class 1 (MINF) and class
2 (DCM) remains the most challenging aspect,
as noted in prior work [KKK19; |ZDA19].

To summarize the performance of the key ap-
proaches tested, we provide the following overview
of private test scores:

Method Private Accuracy (%)
XGBoost (12 features) 34
RF (12 features) 71
RF (14 features) 88
Two-stage voting ensemble 77
(20 features)
RF + MLP refinement 94

(4 clinical features)

Table 4: Summary of private test performance of all
main approaches.

While our final accuracy of 94% does not surpass
the claimed perfect score in [KKK19|, it reflects a



carefully validated pipeline and a well-justified use
of features. Future work may focus on improving
class 1 vs 2 separability, applying interpretable ML
techniques, and incorporating temporal or spatial
features from the cine MRI directly. In particular,
[ZDA19] proposes a method to keep interpretability
of this classification. But this method requires access
to full MRIs and not only to ED et ES instant.

Evaluation Metric

Throughout this challenge, we primarily evaluated
our models using accuracy, as it is the official com-
petition metric used for ranking submissions. Accu-
racy is straightforward and intuitive, especially given
that the dataset is balanced across the five pathology
classes. However, in reality, all classes are not repre-
sented equally. People without any signs of cardiac
pathology are more often met. Therefore it is clear
that our model is skewed due to class balance but it
is comprehensible since we work on disease detection.
A false positive case is better than a false negative.

Limitations

While our final results are encouraging, several lim-
itations must be acknowledged. The dataset is rel-
atively small, which introduces variability in model
performance depending on how data is split during
validation. This is particularly evident in the second-
stage binary classifiers, where AUC scores varied sig-
nificantly across random splits. Moreover, segmenta-
tion masks for the test set were inferred using heuris-
tic methods, which may introduce noise in feature
extraction. Finally, although we focused on well-
established clinical features, the exclusion of tempo-
ral or spatial dynamics from the cine MRI may limit
the model’s capacity to capture more complex patho-
logical signatures.

Additional Datasets for Future Work

To improve generalization and reduce overfitting, fu-
ture work could use additional public cardiac MRI
datasets. Some of the mentioned papers used other

10

data sets as MICCAI. Working with them could help

improving consistency of our models.



References

[Ber+18]

(Ise+18]

[KAK1S]

[Wol+18]

[KKK19]

Olivier Bernard et al. “Deep Learning
Techniques for Automatic MRI Cardiac
Multi-Structures Segmentation and Diag-
nosis: Is the Problem Solved?” In: IEEE
Transactions on Medical Imaging 37.11
(2018), pp. 2514-2525. por: 10 . 1109/
TMI.2018.2837502.

Fabian Isensee et al. “Automatic Car-
diac Disease Assessment on cine-MRI via
Time-Series Segmentation and Domain
Specific Features”. In: Statistical Atlases
and Computational Models of the Heart.
ACDC and MMWHS Challenges. Ed. by
Mihaela Pop et al. Cham: Springer Inter-
national Publishing, 2018, pp. 120-129.
ISBN: 978-3-319-75541-0.

Mahendra Khened, Varghese Alex, and
Ganapathy Krishnamurthi. “Densely
Connected Fully Convolutional Network
for Short-Axis Cardiac Cine MR Image
Segmentation and Heart Diagnosis Using
Random Forest”. In: Statistical Atlases
and Computational Models of the Heart.
ACDC and MMWHS Challenges. Ed. by
Mihaela Pop et al. Cham: Springer Inter-
national Publishing, 2018, pp. 140-151.
ISBN: 978-3-319-75541-0.

Jelmer M. Wolterink et al. “Automatic
Segmentation and Disease Classification
Using Cardiac Cine MR Images”. In: Sta-
tistical Atlases and Computational Mod-
els of the Heart. ACDC and MMWHS
Challenges. Ed. by Mihaela Pop et al.
Cham: Springer International Publish-
ing, 2018, pp. 101-110. 1SBN: 978-3-319-
75541-0.

Mahendra  Khened, Varghese Alex
Kollerathu, and Ganapathy Krishna-
murthi. “Fully convolutional multi-scale
residual DenseNets for cardiac segmen-
tation and automated cardiac diagnosis
using ensemble of classifiers”. In: Medical
Image Analysis 51 (2019), pp. 21-45.

11

[ZDA19]

Qiao Zheng, Hervé Delingette, and
Nicholas Ayache. “Explainable cardiac
pathology classification on cine MRI
with motion characterization by semi-
supervised learning of apparent flow”.
In: Medical Image Analysis 56 (2019),
pp- 80-95.


https://doi.org/10.1109/TMI.2018.2837502
https://doi.org/10.1109/TMI.2018.2837502

	Introduction
	Dataset description
	State of the art
	Non-exhaustive overview of the literature
	Comparative Review

	Data Preprocessing
	End-Diastolic Volume (EDV)
	Ejection Fraction (EF)
	End-Systolic Volume (ESV)
	Anatomical Ratios
	Anthropometric Features
	Conclusion on features' distributions

	Implementation
	First implementation 12 features
	Implementation using 14 features
	Implementation of the 2 stage method
	Stage 1 (Voting Classifier)
	Stage 2 (MINF vs DCM expert)

	New features and improvement
	New features
	Improvement


	Conclusion

